

Understanding Bayesian phylogenetic inference

SSOL 2024, České Budějovice

Jessica NIEDER & Kellen Parker van DAM Lehrstuhl für Multilinguale Computerlinguistik Universität Passau, Germany

23 August 2024

Structure for today

- What are Bayesian phylogenies
- How to read them

What are Bayesian phylogenies

The phylogenetic trees discussed today are probabilistic tree models based on Bayesian inference. They are quantitative and, importantly reproducible.

They are 'Bayesian' as they are based on Bayes' theorem...

maybe Bayes, maybe not, who knows.

Bayes' theorem

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

The probability that *A* is true given that *B* is true equals: the probability that *B* is true given that *A* is true multiplied by the probability that *A* is true, all divided by the probability that *B* is true.

P(*A* | *B*) is our posterior probability

We can use it for phylogenetic (family tree) analysis to determine the likelihood of a given genealogical tree for a given data set.

Consensus trees

Bayesian phylogenies come in difference shapes. They can be consensus trees, i.e. showing the final maximum likelihood as a single clear tree, known as the **consensus tree**, or they can be shown as density trees.

Cacciali, Pier, et al. "Cryptic diversity in the Neotropical gecko genus Phyllopezus Peters, 1878 (Reptilia: Squamata: Phyllodactylidae): A new species from Paraguay." International journal of zoology 2018.1 (2018): 395⁸327.

Rooting

Trees will be either **rooted** or **unrooted**. Rooting the tree is something the researcher does, not something the algorithm does.

In linguistics, you root the tree based on a languages which is related, but known to be more distantly related than all the rest. This is called the outgroup.

For **Romance** languages we may use German as the outgroup. Why?

from https://pages.cs.wisc.edu/~aasmith/

Clades

Subgroups (offshoots, branches...) are called clades.

these can be monophyletic, paraphyletic or polyphyletic.

from https://www.sporcle.com/games/Scuadrado/taxon-taxoff

Posterior probabilities

Upham, Nathan S., Jacob A. Esselstyn, and Walter Jetz. "Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation." PLoS biology 17.12 (2019): e3000494.

Origins in genetics

Stein RW, Mull CG, Kuhn TS, Aschliman NC, Davidson LNK, Joy JB, Smith GJ, Dulvy NK, and Mooers AO. Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nat Ecol Evol. 2018;2: 288–298. http://dx.doi.org/10.1038/s41559-017-0448-4

Yoo, DongAhn, et al. "The genetic origin of short tail in endangered Korean dog, DongGyeongi." Scientific reports 7.1 (2017): 10048.

Applications in Linguistics

Gray, R.D., Atkinson, Q.D. and Greenhill, S.J., 2011. Language evolution and human history: what a difference a date makes. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), pp.1090-1100.

Applications in Linguistics

Gray, R.D., Atkinson, Q.D. and Greenhill, S.J., 2011. Language evolution and human history: what a difference a date makes. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), pp.1090-1100.

It's not just genetics or linguistics

Marwick, Ben, David N. Matzig, and Felix Riede. "Bayesian inference of material culture phylogenies using continuous traits: A birth-death model for Late Neolithic/Early Bronze Age arrowheads from Northwestern Europe." (2023). Most linguistic phylogenies coming out today are **lexical** in nature, i.e. the **cognate sets** are what determined the branches. But they do not need to be lexical

In the same way that we can code pottery features instead of words, we could also code grammatical features, or phonological features. However...

Would this be a good data set for a phylogenetic tree?

	Hawaiian	Maori	Samoan	Tongan	
1	manu	manu	manu	manu	'bird'
2	awa	awa	awa	awa	'channel'
3	niu	niu	niu	niu	'coconut'
4	pua	pua	pua	pua	'flower'
5	pe?a	peka	pe?a	peka	'bat'
6	muli	muri	muli	mui	'behind'
7	kani	taŋi	taŋi	taŋi	'cry'
8	au	au	au	?au	'current'
9	kuna	tuna	tuna	tuna	'eel species'
10	walu	waru	walu	walu	'eight'
11	i?a	ika	i?a	ika	'fish'
12	kae	tae	tae	ta?e	'excrement'
13	lau	rau	lau	lau	'leaf'
14	?uku	kutu	?utu	kutu	'louse'
15	umu	umu	umu	?umu	'oven, earthen'
16	walu	waru	walu	wau	'scratch'
17	kapu	tapu	tapu	tapu	'taboo'
18	ako	ato	ato	?ato	'thatch, roof'
19	lua	rua	lua	ua	'two'
20	lua	rua	lua	lua	'vomit

Branching events

From the Polynesian example we can come up with a rough tree for the languages that shows how they may relate to each other, assuming phonology as informative in this case.

We could group them based on sound changes, or lexical changes, or whatever else we think might be informative.

The wordlist we looked at only had cognates, so we'd have to go by phonology, but this is not usually genealogically informative. Why not?

Branching events

Linguistic data can also be used to determine other things, such as topics within forensic linguistics.

Imagine a series of old hand-copied versions of the same core document, perhaps a founding document from the diocese of Passau. The name of Passau has changed over time, and we might encode the spellings to determine the origin and order of the copies.

There are a number of software tools available. The main ones are **BEAST2** and **MrBayes**.

The main difference, for practical purposes, is that BEAST relies on a clock, and MrBayes does not. This matters based on what we want our **branch lengths** to represent, or if we even have something to calibrate a clock to.

Clock calibration

The idea of calculating age of linguistic branching events based on some steady rate of change (glottochonology) is an old idea, and one which has been rightfully rejected.

Languages don't change at anything like a steady rate.

For genes, it's a bit more stable (but still not fully regular).

However, if we have language varieties which we can assign to dates, this does let us at least place them in time within the tree and BEAST can then make some educated guesses on the timing of events otherwise.

Data preparation

Data starts out as the flat data we've discussed previously. Here's some of mine at an early stage.

concept	T	orthographic	phonetic	phonemic	unified	full_segments	ipa	tokens	language_id	branch
person			mə səŋ-l	mə səŋ+	mə səŋ	mə+səŋ	mi? xan	mi?+xan	Aasen	Patkaian
person			me?1		me?	m e ?	mi?	mi?	Bote	Patkaian
person			mi21		mi?	m i ?	mi?	mi?	Chamkok	Patkaian
person			mit sa1		mit sa	mit+sa	mit sa	mit+sa	Champhang	Patkaian
person		mət			mət	mət	mət	mi?	ChangC	Patkaian
person			mi:21		mi?	mi?	mi?	mi?	CholimHulawng	Patkaian
person	_			mi?	mi?	m i 2	mi?	mi?	CholimJotinKai	Patkaian
person			kʰau [ɲak]		kʰau ɲak	k ^h au+nak	k ^h au na	k ^h iu+ŋa?	Chuyo	Patkaian
person			mi?		mi?	mi?	mi?	mi?	DungiNS	Patkaian
person			mi21		mi?	mi?	mi?	mi?	Gaji	Patkaian
person			nuk ŋa-l		nuk	nuk	nuk	nuk	Gaqha	Patkaian
person			hau [nak]		hau nak	hau+nak	k ^h au na	k ^h iu+na?	Gaqkat	Patkaian
person				mi24	mi?	mi?	mi?	mi?	Gaqlun	Patkaian
person			mi21		mi?	mi?	mi?	mi?	Gawkchung	Patkaian
person					mai	mai	mi?	mi?	Gongwan	Patkaian
person					mai?	mai?	mi?	mi?	Gongwan	Patkaian
person	_			maih	mai?	mai?	mi?	mi?	HahchengMulong	Patkaian
person			xu1 nak		xu nak	xu+nak	k ^h au na	k ^h iu+ɲa?	Haqsik	Patkaian
person			k ^h on-hək		khon nək	k ^h on + n ə k	khau na	k ^h iu+na?	Karyaw	Patkaian
person			mai?		mai?	mai?	mi?	mi?	HahchengNS	Patkaian
person		mi?			mi?	mi?	mi?	mi?	HakhunKB	Patkaian
person		mi?			mi?	mi?	mi?	mi?	HakhunKB	Patkaian

Matrices

In many cases, data are coded essentially in CLDF or other flat tabular data. Then, with software such as LingPy, a matrix can be created, which looks like this.

DebbarmaSatchari	1101000110100000?1011010000110001000?101000110011000??11000000
Dendak	1101000110100000?1011010000110001000?1010001100??????
DeoriBrown	77777777777777777777777777777777710777777
DeoriC	110????????????????????????????????????
DeoriJacquesson	1101110001000110?01100?????011001000?100110??????
DimasaJ	?101000110001000?1011010000????01000?1010001100??????
DimasaX	1101000110001000?1011010000110001000?101000110011000??10011000000
Gabing	1101000110100000?1011010000????01000?10????110010100??11000000
Garo	1101000110001000?1011010000110011000?1010001100??????
KarbiAnglong	1111001110100000?10101000111001?????1010001100100
Kema	1101000110100000?1011001000????01000?10????110011000??11000000
Kewa	1101000110100000?1011010000110001000?101000110011000??11000000
Khali	???????????????????????????????????????
KochHarigayaAmp	1??????????????????????????????????????

Matricies

Having good coverage of concepts per language and languages per concept is important. Here, ? means a form simply wasn't given for that language/concept pair.

Ideally, every language would have every concept, but with outside sources this is often not possible while maintaining a large number of concepts.

		1
DebbarmaSatchari	1101000110100000?	1011010000110001000?101000110011000??11000000
Dendak	1101000110100000?	1011010000110001000?1010001100??????11000000
DeoriBrown	???????????????????????????????????????	°?????????????????????10???????????????
DeoriC	110????????????????????????????????????	°??????????????????10????????????11000000
DeoriJacquesson	1101110001000110?	01100?????011001000?100110???????????01000000
DimasaJ	?101000110001000?	1011010000????01000?1010001100?????????
DimasaX	1101000110001000?	1011010000110001000?101000110011000??10011000000
Gabing	1101000110100000?	1011010000????01000?10????110010100??11000000
Garo	1101000110001000?	1011010000110011000?1010001100222222210001000
KarbiAnglong	1111001110100000?	10101000111001????101000110
Kema	1101000110100000?	1011001000????01000?10????11
Kewa	1101000110100000?	1011010000110001000?10100011
Khali	???????????????????????????????????????	?????????????01000?10??????
KochHarigayaAmp	1??????????????????????????????????????	?????????????00010?10??????

Let's see some trees

Indo-European

Heggarty, Paul, et al. "Language trees with sampled ancestors support a hybrid model for the origin of Indo-European languages." Science 381.6656 (2023): eabgo818.

Sino-Tibetan

Sagart, Laurent, et al. "Dated language phylogenies shed light on the ancestry of Sino-Tibetan." Proceedings of the National Academy of Sciences 116.21 (2019): 10317-10322.

Sino-Tibetan, but different

Zhang, Menghan, et al. "Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic." Nature 569.7754 (2019): 112-115.

Bantu

Figure 8. The phylogeny and spatial spread of the Bantu languages according to [12]. The colours mark the clades, splitting off one after another from the backbone of the expansion.

Neureiter, Nico, et al. "Can Bayesian phylogeography reconstruct migrations and expansions in linguistic evolution?." Royal Society open science 8.1 (2021): 201079.

Issues

Biases?

If you work with a language a lot, you probably have an idea anyway of what the likely branching events were.

However, through computational approaches, we can take the same type of data we'd develop such intuitions on, but on a much larger scale, either by including more languages, more data points, or both.

Rather than us having to keep all the details in mind at once and mentally work out likelihood of relatedness, by using computational tools we can introduce scientific reproducible into our analyses.

It also helps limit some of our biases (but of course never all).

Biases

Here numbers 1-4 represent previously proposed subgbroups of the Rangpang languages. A lexical analysis of around 50 words came up with different groupings. The main branching event also corresponds closely to which word for SEVEN they use in each language.

With 20 words, you may pick SEVEN since you recognise signal in it. You might miss "fiddle-head fern" dismissed as less basic.

When choosing only a few words, we often choose based on what we already expect, thus possibly missing important additional information.

Biases

One major benefit of computational methods is that by opening up a much larger potential data set, our biases around such supposedly important items can be greatly reduced.

Instead of picking 20 words, maybe we pick 200. Instead of 4 languages, 40.

There are practical limits (your time and sanity for example) but we can massively expand our effectiveness with computer assistance.

Ensuring data quality

It's also important to remember that the output is only as good as the data you feed it.

You still need the expertise to know what you're looking at, and how to code the data.

As an example, how many etymological roots are in the data to the right?

Garbage in garbage out

It's also important to remember that the output is only as good as the data you feed it.

You still need the expertise to know what you're looking at, and how to code the data.

As an example, how many etymological roots are in the data to the right?

language	form
Chamkok	hu ki
Jiingi	ko ko
Rangsi	ge
Joglei	hi xeŋ
Kimsing	ku ku
Lainong	zai
Wancho	ki
Muishaung	γ i he

Garbage in garbage out

These methods are not a magic bullet. Nor are they a replacement for linguistic expert iese.

Jiingi & Kimsing are borrowed from Assamese /kukur/ কুকুৰ

/ki~hi~ge/ are from *yui (cf Chinese 狗 gǒu)

*xeŋ < *hen*, a formerly productive plural marker that's been fossilised in Muishaung and Joglei.

A proper analysis requires that all of these are coded accordingly.

language	form	
Chamkok	hu ki	41
Jiingi	ko ko	66
Rangsi	ge	1
Joglei	hi xeŋ	12
Kimsing	ku ku	66
Lainong	zai	1
Wancho	ki	1
Muishaung	γ i he	12

Fine, now what?

Moving forward

Once we have flat data with cognates identified, either via EDICTOR, LingPy or on our own, we can start preparing the nexus file. Nexus files are matricies of the data that can be read and processed by Bayesian tools, either MrBayes or BEAST (or others).

Taking Eastern Polynesian as an example, in the end we may end up with something like the following, with some additional work such as linking to CONCEPTICON...

Eastern Polynesian (from https://github.com/lingpy/)

ID #	DOCULECT	GLOTTOCODE	CONCEPTICON_ID	CONCEPT	FORM	SOURCE	COGID
# 725	Maori	maor1246	1705	Eight	waru	Biggs-85-2005	663
1169	Tahitian	tahi1242	1705	Eight	va'u	Clark-173-2005	663
1595	Rapanui	rapa1244	1705	Eight	va'u	POLLEX	663
1853	Mangareva	mang1401	1705	Eight	varu	POLLEX	663
3076	Sikaiana	sika1261	1705	Eight	valu	POLLEX	663
3297	North_Marquesan	nort2845	1705	Eight	va'u	POLLEX	663
4395	Ra'ivavae	aust1304	1705	Eight	vaGu	Tamaititahio-1213-2015	663
4592	Tuamotuan	tuam1242	1705	Eight	varu	POLLEX	663
5101	Rurutuan	aust1304	1705	Eight	va?u	Meyer-128-2005	663
5614	Hawaiian	hawa1245	1705	Eight	walu	71458	663
#							
728	Maori	maor1246	493	Five	rima	Biggs-85-2005	2
1172	Tahitian	tahi1242	493	Five	pae	Clark-173-2005	1381
1173	Tahitian	tahi1242	493	Five	rima	Clark-173-2005	2
1598	Rapanui	rapa1244	493	Five	rima	POLLEX	2
1856	Mangareva	mang1401	493	Five	rima	POLLEX	2
3079	Sikaiana	sika1261	493	Five	lima	POLLEX	2
3300	North_Marquesan	nort2845	493	Five	'ima	POLLEX	2
4398	Ra'ivavae	aust1304	493	Five	pae	Tamaititahio-1213-2015	1381
4595	Tuamotuan	tuam1242	493	Five	rima	POLLEX	2
5104	Rurutuan	aust1304	493	Five	pae	Meyer-128-2005	1381
5617	Hawaiian	hawa1245	493	Five	lima	71458	2

1	#NEXUS				
2					
з	BEGIN DATA:				
4	DIMENSIONS	NTAX=10 NCHAR=779:			
5	FORMAT DATA	TYPE=RESTRICTION SYMBOLS=01 GAP=- MISSING=?;			
6	MATRIX				
7	Hawaiian	101001011010101010001100001101000001010000			
8	Mangareva	1100010110110010011100010100101010010000			
9	Maori	1001010110110010011100110100101100000101			
10	NorthMarquesan	1????1011111001???110001010010101000100			
11	Rapanui	1????101101100101111001101????101010001110101100100			
12	Raivavae	1000101110101011011100010110000011100000			
13	Rurutuan	1000101110110101001100010110000111100000			
14	Sikaiana	1????101101100100111010001????10?100000100001100100			
15	Tahitian	1????11110111110111000101010011100000000			
16	Tuamotuan	1????1011111001001010100101????10110000????01110100111110110			
17					
18	END;				
19					
20	BEGIN MRBAYES;				
21	charset Eig	ht = 1-1;			
22	charset Fif	ty = 2-5;			
23	charset Fiv	e = 6-7;			
24	charset Fou	r = 8-8;			
25	charset I =	9-10;			
26	charset Nin	e = 11-11;			
27	charset One	= 12-13;			
28	charset One	Hundred = 14-15;			
29	charset One	Thousand = 16-18;			
30	charset Sev	en = 19-19;			
31	charset Six	= 20-21;			
32	charset Ten	= 22-25;			
33	charset Thr	ee = 26-26:			

Phylogenies

Running that through MrBayes, we may get something like this.

DOCULECT	GLOTTOCODE	CONCEPT	FORM	COGID
Maori	maor1246	Five	rima	2
Tahitian	tahi1242	Five	pae	1381
Tahitian	tahi1242	Five	rima	2
Rapanui	rapa1244	Five	rima	2
Mangareva	mang1401	Five	rima	2
Sikaiana	sika1261	Five	lima	2
North_Marquesan	nort2845	Five	'ima	2
Ra'ivavae	aust1304	Five	pae	1381
Tuamotuan	tuam1242	Five	rima	2
Rurutuan	aust1304	Five	pae	1381
Hawaiian	hawa1245	Five	lima	2

AI is not stealing our jobs

A puzzle

Knowing what we do about posterior probabilities, what might these circled numbers mean?

Low probabilities

Low posterior probabilities can come from a number of sources:

- unaccounted-for language contact
- incorrect cognate identification
- very week coverage of data for a given language or languages
- data which doesn't actually carry much phylogenetic signal

DebbarmaSatchari 110100011010000071011000100071010001000		
Dendak 11010001101000007/01100010007100001000777771100000000	DebbarmaSatchari	110100011010000070011000011000100071010001100110007711000000
DeoriBrown ????????????????????????????????????	Dendak	11010001101000007101101000011000100071010001100777777
DecriC 110???????????????????????????????????	DeoriBrown	<i><i><i><i>т</i>ттттттттттт</i></i></i>
DeoriJacquesson 1101110001000110701100777701000100710777777	DeoriC	110??????????????? <mark>??</mark> ??????????????????
DimasaJ 71010001100010007;01101000007777100007101000110077777777	DeoriJacquesson	110111000100011 <mark>0</mark> ?01100?????011001000?100110??????????
DimasaX 11010901100010007;0110100001000710100011001100	DimasaJ	710100011000100 <mark>0</mark> ? <mark>1</mark> 011010000????01000?1010001100?????????
Gabing 11010001101000007:0110000077?7110007107?771100010000000000	DimasaX	110100011000100 <mark>0</mark> ? <mark>011010000110001000?101000110011000??10011000000</mark>
Garo 11010001100010007:01100100071001000110072222771000100000000	Gabing	110100011010000 <mark>0</mark> ? <mark>011010000????01000?10????110010100??11000000</mark>
KarbiAnglong 111100110000007:0101000017:07771010000100 Kema 11010001101000007:0110007707100007107701100 Kewa 11010001101000007:01100000120010007101701000 Khali 77777777777777777777701000210077777 KochHarigayaAmp 177777777777777777777777000010710777777	Garo	1101000110001000? 011010000110011000?1010001100222222210001000
Kema 11010001101000007:01100100077770100071077771 Kewa 110100011001000017:0011000011000100077771 Khali 7777777777777777777777700007107777770000107107	KarbiAnglong	11110011101000007 010100011100177777101000110
Kewa 110100010100000710110001000710100010001	Kema	110100011010000071011001000777701000710777711
Khali ???????????????????????????????01000?10??????	Kewa	1101000110100000?1011010000110001000?10100011
KochHarigayaAmp 1????????????????????????????????00010?10?	Khali	· ????????????????????????????????????
	KochHarigayaAmp	1??????????????????????????????????????

Low probabilities

Low posterior probabilities can come from a number of sources:

- unaccounted-for language contact
- incorrect cognate identification
- very week coverage of data for a given language or languages
- data which doesn't actually carry much phylogenetic signal (next slide)

